1€2 333

D_/ﬂ‘

£
-

P

RS RE MEMORANDUM No. 4158

|

UNLIMITED - LhiUsuon @

 RSRE
MEMORANDUM No. 4158

ROYAL SIGNALS & RADAR
ESTABLISHMENT |

COUNTING PATHS IN COMPUTE 3 PROGRAMS

Author: B D Bramson

PROCUREMENT EXECUTIVE
~ MINISTRY OF DEcENCE
RSRE MALVERN,
‘ woncs |

UNLIMITED

88 8 31 063

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4158

COUNTING PATHS IN COMPUTER PROGRAMS

Py —

B D Bramson

May, 1988

Abstract

An algebraic method is presented for assessing the numbers of paths through loop-
free portions of computer programs, thus providing a useful measure of complexity.
The underlying program model is that of a directed graph, though this does not
exclude recursion. The algebraic structure is that of a path algebra but with one axiom
relaxed. The theory has been implemented within the Malvern Program Analysis Suite
{MALPAS). Experience has shown it to be of particular value in guiding the analysis
of large programs. a4 P . \
Ty ‘ ST sk / [ey,

- #
- -~

- - T

-l . _Accession For
, NTIS GRAaI
DTIC TAB

Unannounced 0
Justitioatio

By ____
Distri@u}ion/
Availqtfil 1ty Codes
Avafl ‘and/or
Special

Al

Dist

Copyright
©
Controller HMSO London
1988

1 INTRODUCTION 1
2 THE PATH ASSESSOR 2

3 CONCLUSION 3

|
i Contents

il

c o tn s e o gt

v "'—A‘hw.ﬂ-—“”‘

-

cr——

R

— - hatiay * o st i dulhe

1 INTRODUCTION

A recent report [1] summarises the Malvern Program Analysis Suite, MALPAS, a set
of tools for the assessment and verification of software that may be used throughout
development or post facto. Two of the analysers reveal the flows of control and information
through a given program. The resources required for each of these are polynomial functions
of the size of the program in terms of numbers of statements and declarations of data. A
further tool, the Semantic Analyser, executes the program symbolically and provides a
description of each loop-free program path, loops being exercised precisely once. However,
semantic analysis is non-polynomial in nature. In particular, the number of paths through
a loop-free procedure can depend exponentially on the number of conditional statements.

TYPE anytype.

FUNCTION p(integer, anytype): boolean;
FUNCTION f(integer, anytype): anytype;:
FUNCTION g(integer, anytype): anytype;

PROCSPEC iffy(INOUT x: anytype);

PROC iffy:
IF p(1,x) THEN x := £(1,x) ELSE x := g(1,x) ENDIF;
IF p(2,x) THEN x := £(2,x) ELSE x := g(2,x) ENDIF;

IF p(n,x) THEN x := f(n,x) ELSE x := g(n,x) ENDIF
ENDPROC
FINISH

Figure 1: The procedure “iffy” has n conditional statements in series and 2" potential
paths.

Given the path-condition,

NOT p(1,x) AND p(2, g(1,x)) AND p(3, £(2, g(1,x))) AND

the corresponding action is

x := f(n, f£(n-1, £(n-2, (2, g(1.,x)))).........).

Figure 2: A typical path-condition for the procedure “iffy” and the corresponding
input-output relation.

Figure 1, expressed in MALPAS Intermediate Language (IL) [2,3] illustrates the prob-
lem. The semantic analysis of the procedure “iffy” yields a path-condition and consequent

1

action for each path. For example, the path for which all the p s are true on execution,
except for the first, is described algebraically in figure 2.

It may be seen that the numbers of ASCII characters contained in the path-condition
and action depicted in figure 2 are respectively quadratic and linear in n. Further, there
are 2" program paths. So, ignoring possible algebraic simplifications, the volume of infor-
mation presented to the analyst is of order n? 2". Thus, there will be programs for which
the unfettered application of semantic analysis is doomed to failure. No matter how big
or how fast the computer, n can always be increased to defeat it.

Two techniques have been implemented to circumvent the problem just described and
each involves processing a given program prior to semantic analysis. The Partial Pro-
grammer [4,5], given a subset of program variables nominated by the user, generates a
new program dedicated to their specific calculation by removing irrelevant conditional
statements. Reducing n by 1 in figure 1 halves the volume of output presented to the
analyst. In practice, more dramatic improvements have been experienced.

Node marking [6], on the other hand, involves partitioning the program by fixing key
way-points for retention. Semantic analysis then reveals the behaviour of the program
between the retained nodes. A choice of dominator, P, for example, would generate ex-
pressions like those depicted in figure 2 for the (symbolic) execution from the start to P
and from P to the end, effectively re-introducing an element of sequential logic. If P par-
titions the program into pieces that each contain n/2 conditionals, the volume of output
decreases by a factor 21+"/2,

In the light of experience, it became clear that an estimate of the number of program
paths would be essential if the analysis of large programs were to be tackled. The purpose of
the following section is therefore to outline the theory behind the MALPAS Path Assessor.

2 THE PATH ASSESSOR

Consider, first, an arbitrary loop-free procedure, with a single start and single end, that
may or may not call other procedures including itself. Suppose the procedure to be mod-
elled as a labelled, directed graph G whose nodes correspond to simple statements or
procedure calls and whose arcs are labelled with the distinct elements of an abstract al-
phabet A. The details of the map from the procedure to the graph need not concern us.
The point is that the number of paths through the graph indicates the number of syn-
tactically possible paths through the procedure without expanding any procedure calls.
1

By employing node reduction [7,8], the graph G may be transformed into a regul.r
expression in A [9] that involves only the operations x (sequence) and + (alternation).
Owing to the loop-free assumption, * is omitted. Let the set of such restricted expressions
be R(A).

Separately, consider the set N of natural numbers {0,1,2...}, closed under the arithmetic
operations x and +. ? Then the algebra {N, x, +} satisfies all but one of .he axioms of
a path algebra [10], + not being idempotent. (For completeness, when applied to N: +

'In MALPAS IL, the specifications of procedures are called rather than their t.odies.

?Note that x and + are defined for both regular expressions and integers.

is commutative and associative; x is associative and left and right distributive over +.
There is a multiplicative identity, namely 1, and an element, namely O, that is both an
additive identity and a two-sided multiplicative zero.)

Next, we set up a map, PATHS, from R(A) to N, first by assigning 1 to each arc in
G and thereafter by natural extension. Thus, for each a in A and for each u, v in R(A):

|}

1
PATHS(u) x PATHS(v) (1)
PATHS(u) + PATHS(v)

PATHS(a)
PATHS(u x v)
PATHS(u + v)

i

Manifestly, the axioms 1 are sufficient to guarantee that the result of applying PATH S
to any restricted regular expression is independent of the sequence of evaluation, modulo
standard conventions on removing brackets. Furthermore, the map is useful in so far as it
calculates in polynomial time 3 the number of paths through G.

Note, however, that PATHS is not a homomorphism from the restricted algebra of
languages over A into N. An element of the former is a set of words with + being set union
and idempotent. The axiom of idempotency is not preserved by the map. Nevertheless,
because G’s arc labels are distinct, sub-expressions of the form s + s never appear.

Finally, for programs with loops, the analysis above may be applied to each loop-free
portion of each procedure. One approach is to use node reduction to generate regular
expressions while preserving nodes with self-loops as they are encountered.

3 CONCLUSION

The technique of path assessment just described was implemented by RSRE and added
to the Malvern Program Analysis Suite where it is now supported commercially. The
MALPAS Path Assessor has been used in many real applications. It provides a simple
but accurate assessment of the structural complexity of software and can indicate where
practical problems may arise in attempting to run the Semantic or Compliance Analysers.
)

It is interesting to note that the algebra on which path assessment is based is not a
path algebra; which seems to be an example of a more general phenomenon [12].

Finally, it gives me great pleasure to thank: J-A Fernandez {or his efficient and accurate
implementation of the ideas presented in this paper; Dr J M Foster for a correspondence
relating to the relaxation of algebraic axioms; and H C Williams for suggestions that have
added clarity to the text.

References

[1] Tools for the specification, design, analysis and verification of software:
B D Bramson, RSRE report 87005, 1987.

%linear for a “while-structured” program

(2]

3l

(5]

MALPAS Intermediate Language (Version 3.2):
R J Granville & C M O’Halloran, RSRE memorandum 3731, 1986.

MALPAS Intermediate Language Manual, version 4.0:
Rex, Thompson & Partners, 1987.

An exercise in partial programming: B D Bramson, RSRE report 85002, 1985.

Automatic extraction of partial programs:
R J Granville & C M O'Halloran, RSRE memorandum 3736, 1986.

A note on node marking: B D Bramson, RSRE memorandum 3503, 1982.

Graph theory leads to program visibility
B D Bramson & S J Goodenough, RSRE report 80004, 1980.

The mathematical foundations of node reduction:
B D Bramson, RSRE report 81014, 1981.

Data use analysis for computer programs:
B D Bramson & S J Goodencugh, RSRE report 82001, 1982.

Graphs and networks: B A Carré, Oxford University Press, 1979.
MALPAS User Guide, release 4.1: Rex, Thompson & Partners, 1988.

Algebraic specification of a target machine, Tenl5:
J M Foster, article in High Integrity Software,
ed C T Sennett, Pitman Publishing, to appear.

-

DOCUMENT CONTRJL SHEET

Cverall security classification of sheel UNCLASSIFIED

(&< far as possitle thic sheet should contain only unclassified information. If it is necessary tc en‘er
clazcified information, the box concerned must be marked tc indicate the classification eg (R} (C) or (1%}

1. D51C Reference (i known} | 2. Originator's Reference | 3. Agency Reference 4. Report Security o
MEMO 4158 usc Clesr feeter
. Originator's Code (if 6. Originator {Corcorate Author) Name and Location
778407 known) ROYAL SIGNALS & RADAR ESTAELISHMENT

ST ANDREWS ROAD, GREAT MALVEERN,
WCRCESTERSHIRE, WR14 3PS

Sa. Scanicring Ageacy's a. Sconsoring Agency (Contract Authority) Nare and locatizn
Code (i % known)

Courting paths in cormputer programs

Ta. Tile in Foreig- language (in the case of translations)

Tt Prese~tex a* [f:r con‘erenze ragers) Title, place and date of con‘erence

€. Atror) Surmame, initials | §{a) Autror 2 9(t) Authors 3,4... 10. Date to. ret,
BELMECN B D 1gie s L
11, Certract humer 12. Period 13, Proiect T4, Otrer Reference

15, Distritution statement

UKLIMITED

Gescricters (or keyworde)

centinge on secarate riece cf rater ‘

Atstract An algebraic method is presented for assessing the numbers of paths
through loopfree portions of computer programs, thus providing a useful
measure of complexity. The underlying program model is that of a directed
graph, though this does not exclude recursion. The algebraic structure

is that of a path algebra but with one axiom relaxed. The theory has been
implemented within the Malvern Frogram Analysis Suite (MALPAS).

Experience has shown it to be of particular value in guiding the analysis of
large programs.

SB/4E

